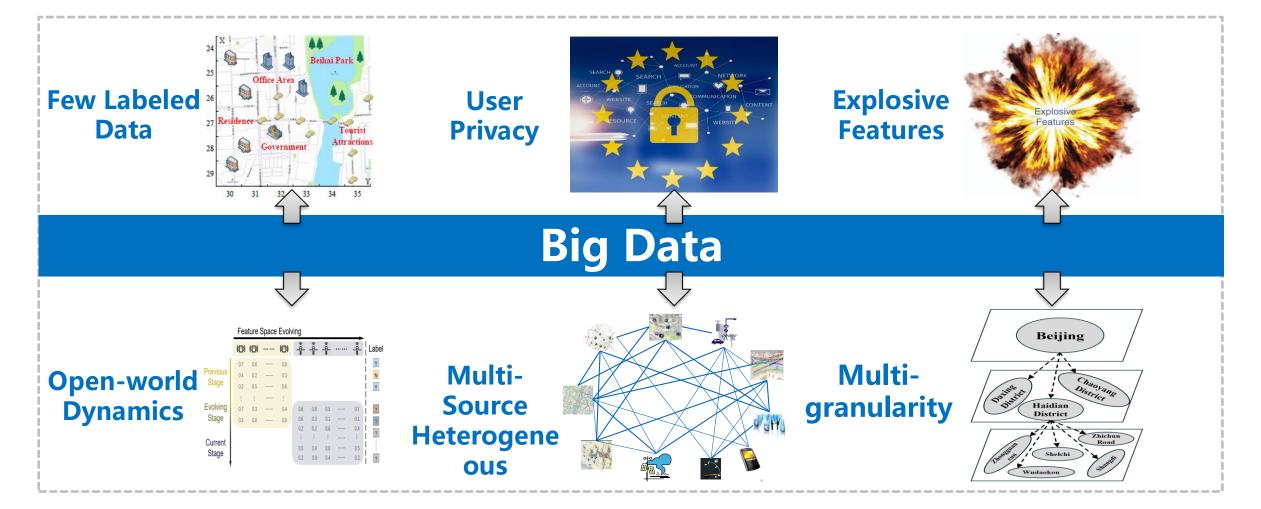
IJCRS 2023, Oct. 6, Poland

Big Data Intelligence: Challenges and Our Solutions

Tianrui Ll

Southwest Jiaotong University, China trli@swjtu.edu.cn

Big Data Intelligence: Challenges



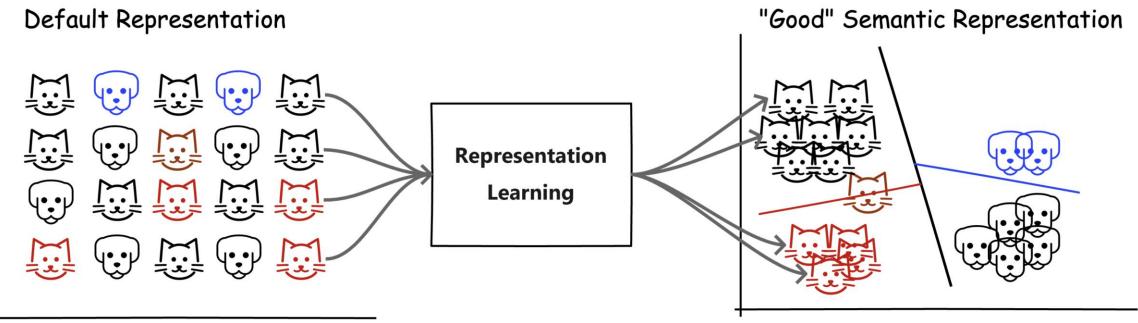
Problem 1: Few Labeled Data

Joint work with

Jielei Chu, Jing Liu, Hongjun Wang, Hua Meng, Zhiguo Gong, Tianrui Li. *Micro-supervised disturbance learning: A perspective of representation probability distribution*. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Learning Expressive Representations

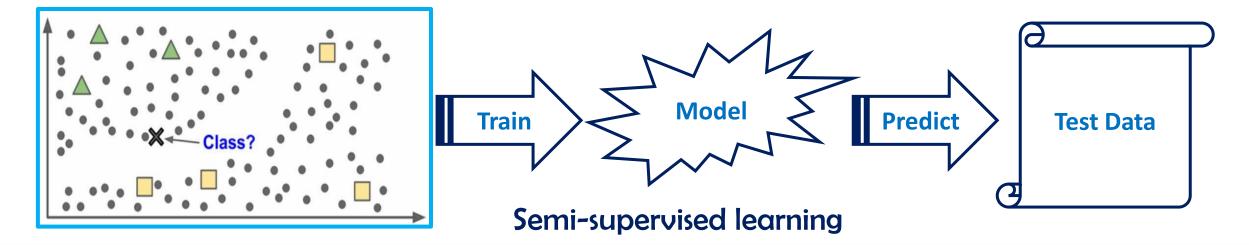
• Learning expressive representations is a fundamental problem in machine learning area



Cat by Martin LEBRETON, Dog by Serhii Smirnov from the Noun Project

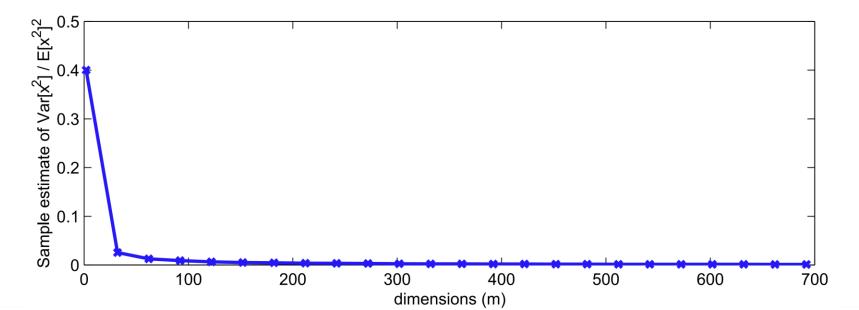
Learning Expressive Representations

- Semi-supervised learning refers to a learning problem that involves a small portion of labeled examples and a large number of unlabeled examples from which a model must learn and make predictions on new examples.
- The scarcity and high cost of labels prompt us to explore more expressive representation learning methods which depends on as few labels as possible.



Learning Expressive Representations

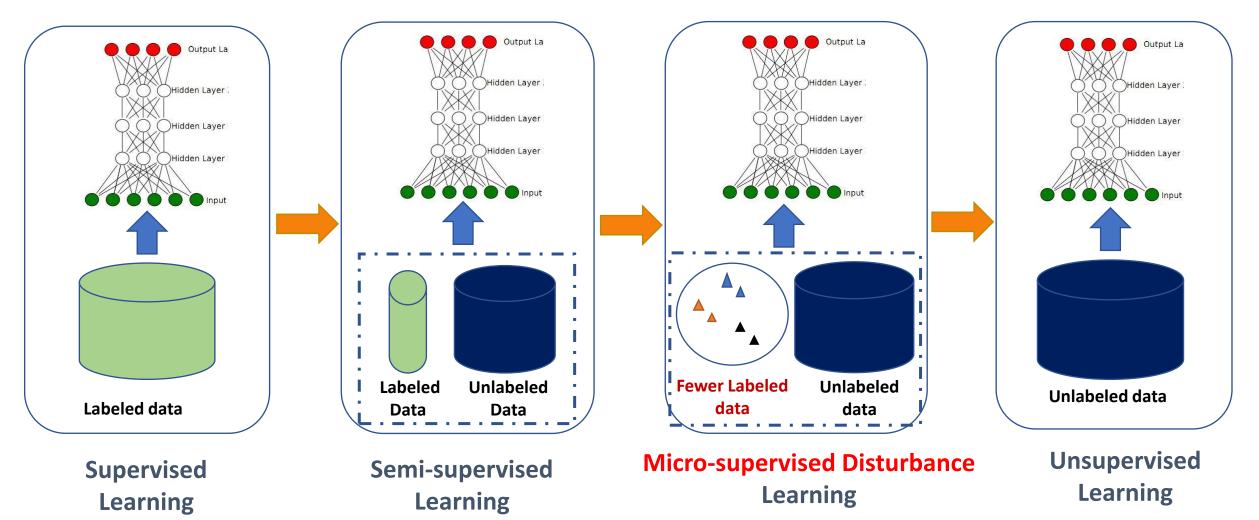
- Euclidean distance is useful in semi-supervised models. However, these models show somewhat instabilities called distance concentration phenomenon.
 - As the data dimensionality increases, all the pairwise distances (dissimilarities) may converge to the same value.

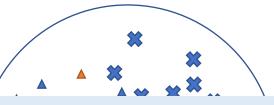


- The motivation derives from the small-perturbation ideology of physical systems.
 - The original state of the physical system changes slightly under the stimulation of small disturbance.
- Two interesting problems:
 - Whether the small disturbance can be used to stimulate the representation learning model to fine-tune the expected representation probability distribution?
 - Whether the representation learning capability can significantly improve under the continuous stimulation of small disturbance?

- To achieve these goals, the small-perturbation information (SPI) is used to stimulate the representation learning process from the perspective of representation probability distribution.
- Two variant models are proposed to fine-tune the expected representation distribution of RBM.
 - Micro-supervised Disturbance Gaussian-binary RBM (Micro-DGRBM).
 - Micro-supervised Disturbance RBM (Micro-DRBM) models.
- The SPI only depends on two labels of each cluster. Hence, we term this learning pattern as Micro-supervised Disturbance Learning (Micro-DL).

896

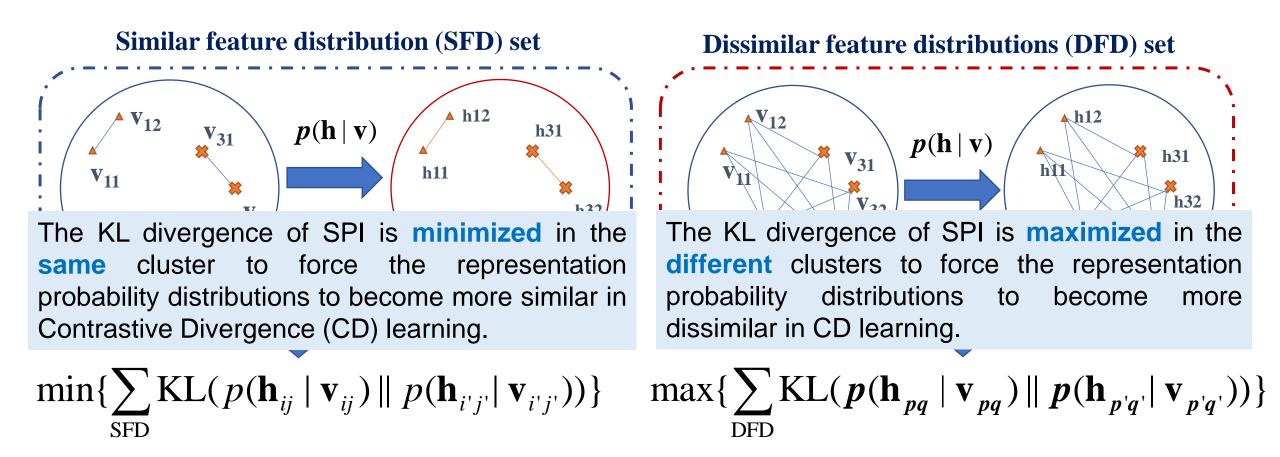




SFD and **DFD** are used to define **SPI** to stimulate the representation learning process from the perspective of representation probability distribution and then to fine-tune the expected representation distribution.

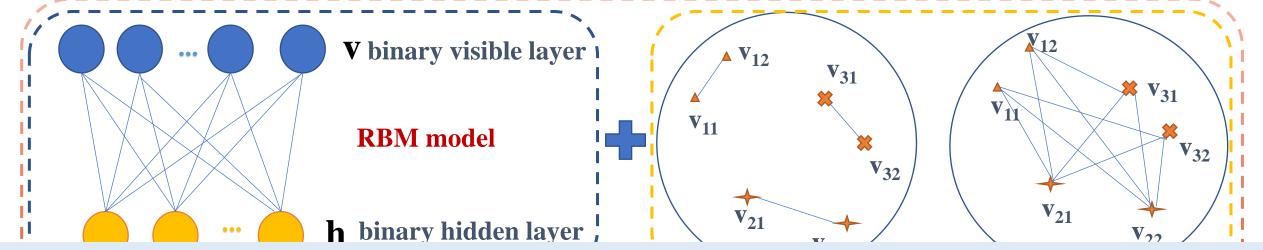
 $\int_{V_{11}} \int_{V_{22}} \int_{V_{22}$

SFD={ $(h_f, h_g) | p(h_f | v_f)$ and $p(h_g | v_g)$ are similar} v_f and v_g are in the same cluster. **Dissimilar feature distributions (DFD) set DFD**={ $(h_r, h_s) | p(h_r | v_r)$ and $p(h_s | v_s)$ are dissimilar} v_r and v_s are in the different cluster.



The Kullback-Leibler (KL) divergence is used to measure the difference between two probability distributions.

Micro-supervised Disturbance RBM (Micro-DRBM)



Under the stimulation of these Micro-supervised Disturbance, we expect that the representation probability distributions become more similar and dissimilar in the same and different clusters, respectively.

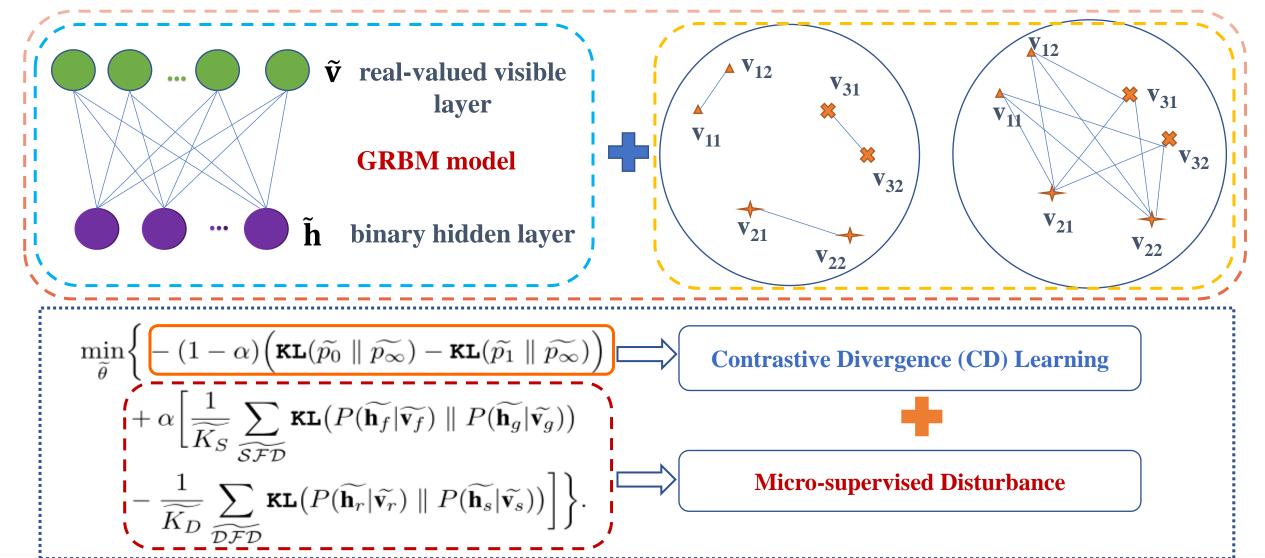
$$\min_{\theta} \left\{ -(1-\alpha) \left(\mathsf{KL}(p_0 \parallel p_\infty) - \mathsf{KL}(p_1 \parallel p_\infty) \right) \right\}$$
 Contrastive Divergence (CD) Learning

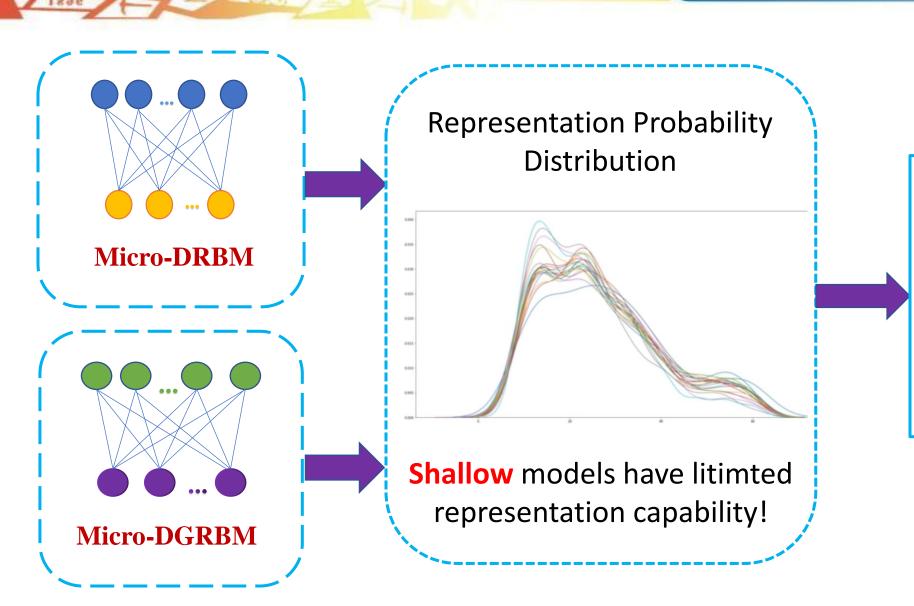
$$+ \alpha \left[\frac{1}{K_S} \sum_{\mathcal{SFD}} \mathsf{KL}(P(\mathbf{h}_f | \mathbf{v}_f) \parallel P(\mathbf{h}_g | \mathbf{v}_g)) \right]$$
 Micro-supervised Disturbance

$$- \frac{1}{K_D} \sum_{\mathcal{DFD}} \mathsf{KL}(P(\mathbf{h}_r | \mathbf{v}_r) \parallel P(\mathbf{h}_s | \mathbf{v}_s)) \right]$$

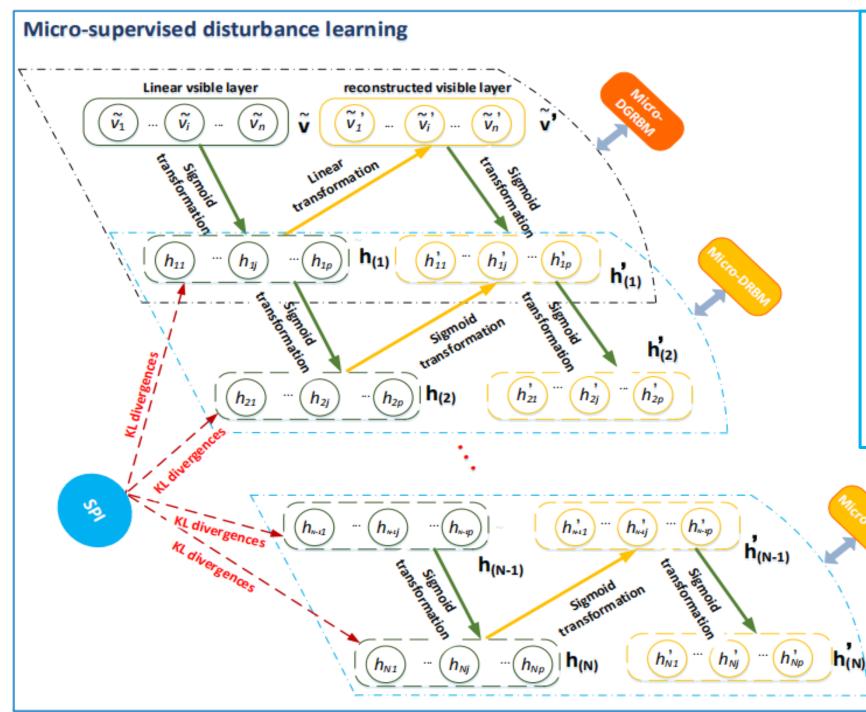
Micro-supervised Disturbance Gaussian-binary RBM (Micro-DGRBM)

3681





Whether deep framework has better representation capability under the continuous stimulation of small-perturbation information?



To explore the representation learning capability under the **continuous stimulation** of small disturbance, a deep **micro-supervised disturbance learning** (Micro-DL) is developed.

 \bullet

 It consists of a stack of one Micro-DGRBM and N Micro-DRBMs.

Evaluation

• Our Micro-DL model outperforms state-of-the-art baseline models

Performance Comparisions (Rank) of Benchmarking Algorithms (Semi-SP), Shallow Models (pcGRBM and Semi-EAGR), and Deep Models (Semi-MG, VGAE, NMicro-DL and Micro-DL)

Dataset	Semi-SP	pcGRBM	Semi-EAGR	Semi-MG	VGAE	NMicro-DL	Micro-DL	Total
aquarium	-0.1006 (65)	-0.1218 (71)	-0.0827 (58)	0.0997 (25)	0.0453 (34)	-0.0341 (49)	0.1695 (6)	304
bathroom	-0.0787 (56)	-0.1708 (80)	-0.1214 (69)	0.1601 (8)	0.0142 (39)		0.2310 (2)	303
blog	-0.0788 (57)	-0.1433 (75)	-0.1142 (67)	0.1175 (18)	0.0274 (37)		0.1951 (3)	300

It means the representation learning capability of our Micro-DL architecture has significantly enhanced under the continuous stimulation of small-perturbation information (SPI).

vowe Total Average Rank	-0.0385 (50) 799 66.5833	-0.0615 (54) 713 59.4167	0.0043 (41) 679 56.5833	0.0343 (35) 303 25.2500	-0.0003 (42) 458 38.1667	-0.0093 (46) 505 42.0833	0.0710 (29) 113 9.4167	297 3570
KDD99 segmentation	-0.4220 (84) -0.2102 (83)	0.1244 (17) 0.0507 (33)	0.0211 (38) 0.0999 (24)	0.1045 (23) -0.1175 (68)	-0.1508 (78) 0.0694 (30)	0.1460 (12) -0.0046 (44)	0.1766 (4) 0.1125 (20)	256 302
car	-0.1607 (79)	0.1283 (16)	-0.0858 (59)	0.0786 (28)	-0.1407 (74)	0.0512 (32)	0.1290 (15)	303
voituretuning	-0.0900 (60)	-0.1215 (70)	-0.0577 (53)	0.0819 (27)	0.0565 (31)	-0.0163 (47)	0.1662 (7)	299

Problem 2:

Data Privacy Protection

Data Privacy Protection in Daily Schedule Recommendation

Joint work with

Wei Huang, Jia Liu, Tianrui Li, Tianqiang Huang, Shenggong Ji, Jihong Wan. *FedDSR: Daily schedule recommendation in a federated deep reinforcement learning framework*. IEEE Transactions on Knowledge and Data Engineering, 2023.

Data Privacy and Security

- Big Data inevitably involves the users' privacy
- Effective data privacy protection is very important for Big Data Intelligence

YOUR CUSTOMERS' RIGHTS UNDER GDPR

RIGHT TO BE INFORMED

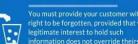
Be transparent in how you collect and process personal information and the purposes that you intend to use it for. Inform your customer of their rights and how to carry them out.

RIGHT OF ACCESS

Your customer has the right to access their data. You need to enable this either through business process or technical means.

Your customer has the right to correct information that they believe is inaccurate.

RIGHT TO ERASURE



 RIGHT TO DATA PORTABILITY

 You need to enable the machine and human-readable export of your customers' personal information.

 RIGHT TO OBJECT

RIGHT TO RESTRICTION OF

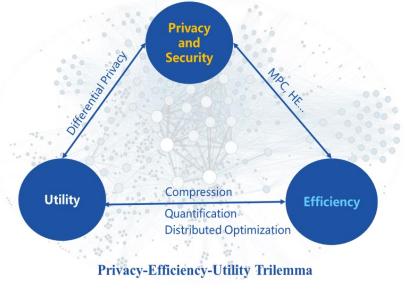
PROCESSING

Your customer has the right to object to you using their data.

RIGHTS REGARDING AUTOMATED

Your customer has the right not to be subj to a decision based solely on automated processing, including profiling.

- In 2018, EU issued the General Data Protection Regulation (GDPR)
- Data privacy faces the Privacy-Efficiency-Utility Trilemma



Data Privacy and Security

 Data Regulatory Legal System —— "Data Privacy Protection Regulation is Getting Tougher Around the

California Consumer Privacy Act (CCPA) Compliance Tips California's Consumer Privacy Protection Act (CCPA) goes into effect on January 1, 2020. The CCPA is a broad-ranging legal framework regulating data and enhancing privacy rights for Californians. The law will change the way companies across the United States navigate data protection and privacy.

RICHT

Federated Learning

Global Model

 ✓ CCPA in the United States California 《California Consumer Privacy Act》

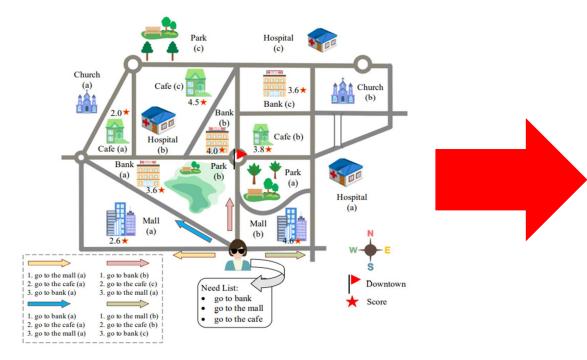
REVIEN UPDA VEND GREEN

Data Silos

China has successively introduced comprehensive and stringent regulations on data security protection.

Daily Schedule Recommendation

• The daily schedule recommendation is to arrange a reasonable sequence of activities and the location of activities

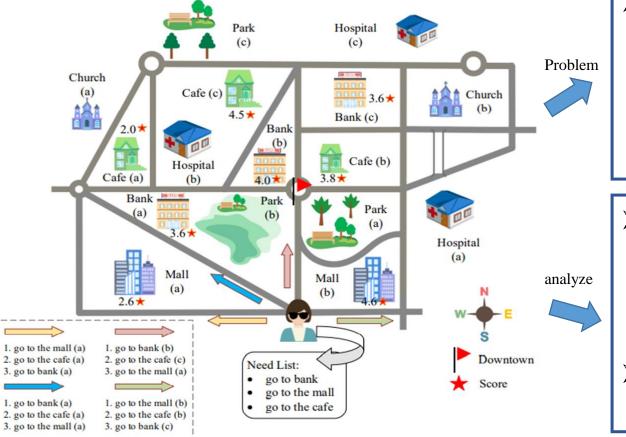


An example of user daily schedules

E.g., home address, behavioral habits

Daily Schedule Recommendation

• An example of user daily schedules



How to recommend the order and location of activities that meet the user's needs while complying with the data security protection regulations?

Federated Learning + Deep Reinforcement Learning

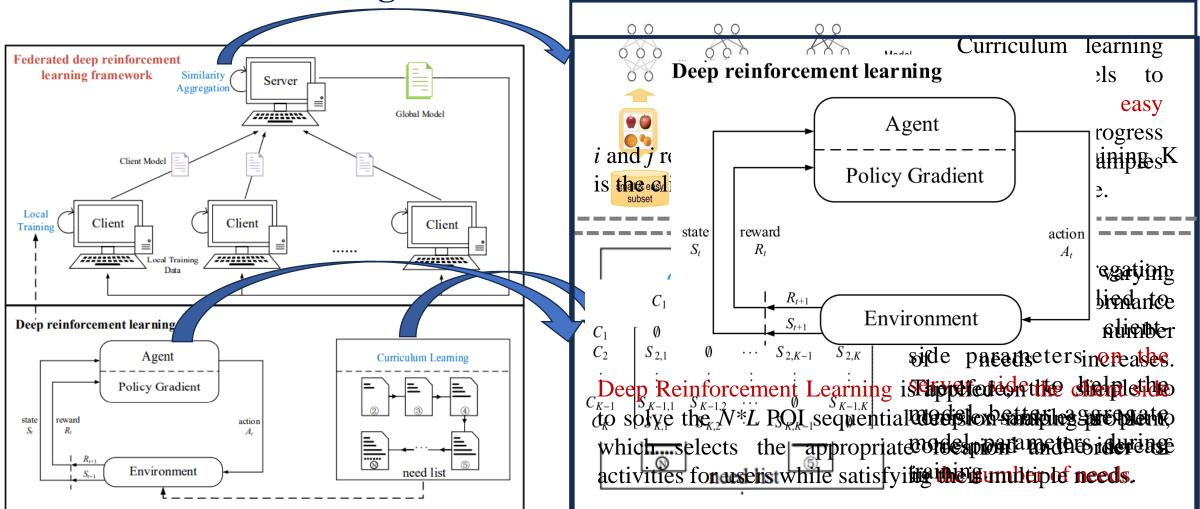
The longer the user's list of needs, the more complex the sequential decisions that deep reinforcement learning models need to be trained for.
 Curriculum Learning
 Users' location and their trajectory data are

Users' location and their trajectory data are sensitive and private.
 Federated Learning

Architecture Design

1896

A THEFT



Evaluation

• The proposed FedDSR has better results in *distance, time,* and *score,* and the *perimeter* is lower than all the comparison algorithms

TABLE 3						Mathad	Chengdu			Geolife					
Distribution of users' needs in the two datasets.					Method	distance	time	score	perimeter	distance	time	score	perimeter		
Need				_		_		(km)	(min)	(point)	/	(km)	(min)	(point)	l'
Dataset	2	3	4	5	6	7	RS	4.12	35.51	2.37	117.36	1.81	20.83	2.21	73.03
Geolife	40.7%	26.8%	16.0%	9.8%	4.8%	1.9%	DG	1.05	12.05	2.72	34.52	0.78	8.02	2.36	26.61
Chengdu	22.5%	26.6%	23.9%	18.8%	6.0%	2.2%	EG	1.14	12.06	2.94	31.22	1.44	13.90	2.79	38.60
0	M(3, 45°)						SG	3.58	28.51	3.53	52.67	2.17	25.80	3.33	54.13
							KNN-SD	2.97	24.90	2.56	76.35	1.39	13.22	3.20	29.90
							MS	1.02	11.28	2.65	33.31	0.95	10.59	2.91	27.81
perimeter						CDRL	1.87	15.53	3.77	24.00	1.26	13.19	3.43	26.02	
C	0 ^{−5θ} x						FedDSR	2.06	16.02	4.03	19.53	0.82	9.58	3.54	17.58

Problem 3: Explosive Features

Scalable Feature Selection by Spark Rough Hypercuboid Approach

Joint work with

Chuan Luo, Sizhao Wang, Tianrui Li, Hongmei Chen, Jiancheng Lv, Zhang Yi. *Spark rough hypercuboid approach for scalable feature selection*. IEEE Transactions on Knowledge and Data Engineering, 2023.

The Curse of Dimensionality

• The explosive features brings new challenges to Big Data Intelligence

(c)	LIBSVM DATABASE		
APPLICATION DOMAIN	DATA NAME	DIMENSION	YEAR
IMAGE	USPS	256	1994
	GISETTE	5,000	2003
LIFE SCIENCE	LEUKEMIA	7,129	1999
	COLON-CANCER	2,000	1999
	BREAST-CANCER	7,129	2001
TEXT	NEWS20	62,061	1995
	REAL-SIM	20,958	1998
	SECTOR	55,197	1998
	RCV1	47,236	2004
	NEWS20.BINARY	1,355,191	2005
	WEBSPAM	16,609,143	2006
	SIAM	30,438	2007
	LOG1P	4,272,227	2009
EDUCATION	KDD2010	29,890,095	2010

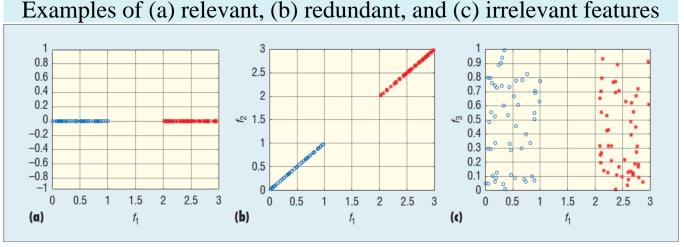
Data volume presents an immediate challenge pertaining to the *scalability issue*.

A single machine can no longer process or even store all the data. Only solution is to *distribute data over large clusters*.

Most algorithms are **serial-computing** implementations and still struggle when processing large-scale datasets due to the **limited computational and storage resources**.

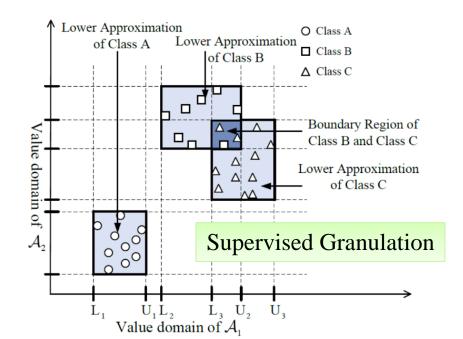
Feature Selection

- Real-world data contains a lot of irrelevant, redundant and noisy features
- Feature selection
 - Preparing clean understandable data
 - Building more compact and efficient models
 - Improving data mining performance



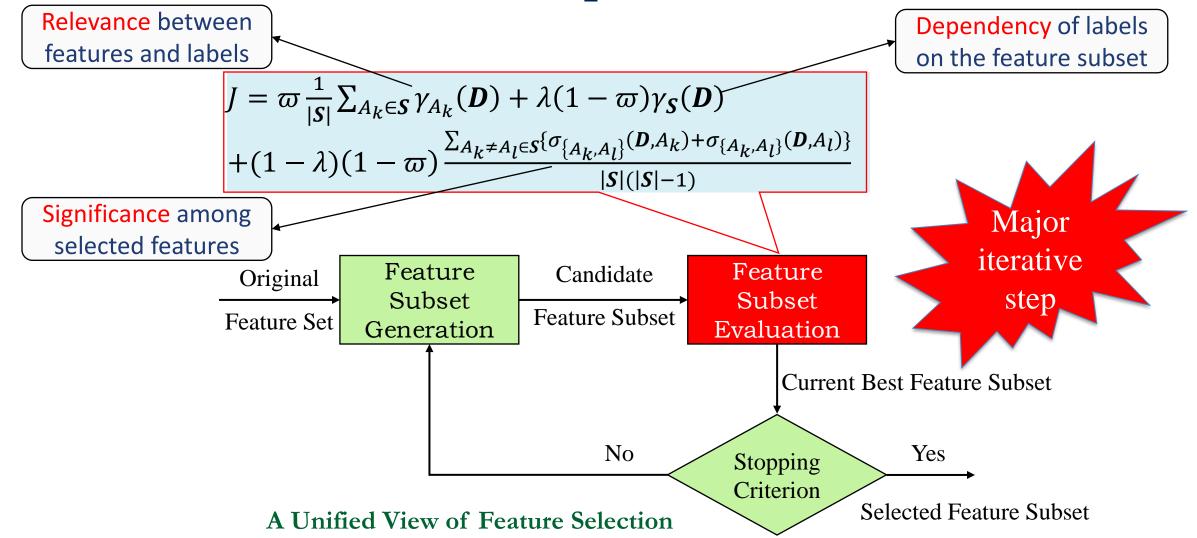
J.D. Li, et al, Feature Selection: A Data Perspective. ACM Comput. Surv. 50(6): 94:1-94:45 (2018)

- Rough hypercuboids approach
 - Integrating the merits of rough sets and hypercuboid learning
 - Hybrid objective function to measure discriminating ability of features



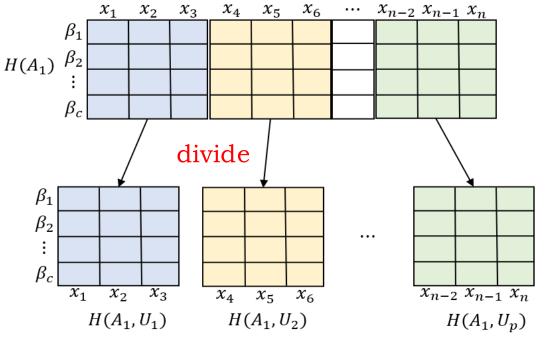
Parallel Optimization

896



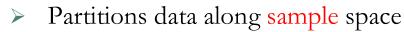
Data Parallelism Strategies

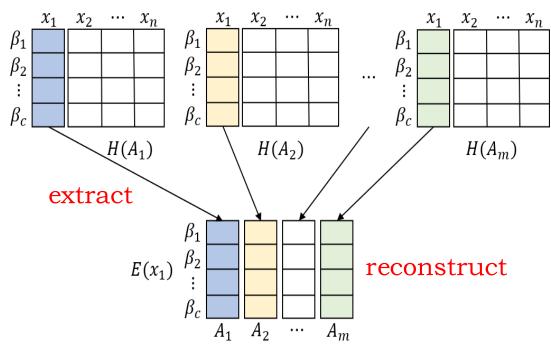
- Vertical partitioning
 - Partitions data along feature space



Hypercuboid matrix of feature

Horizontal partitioning

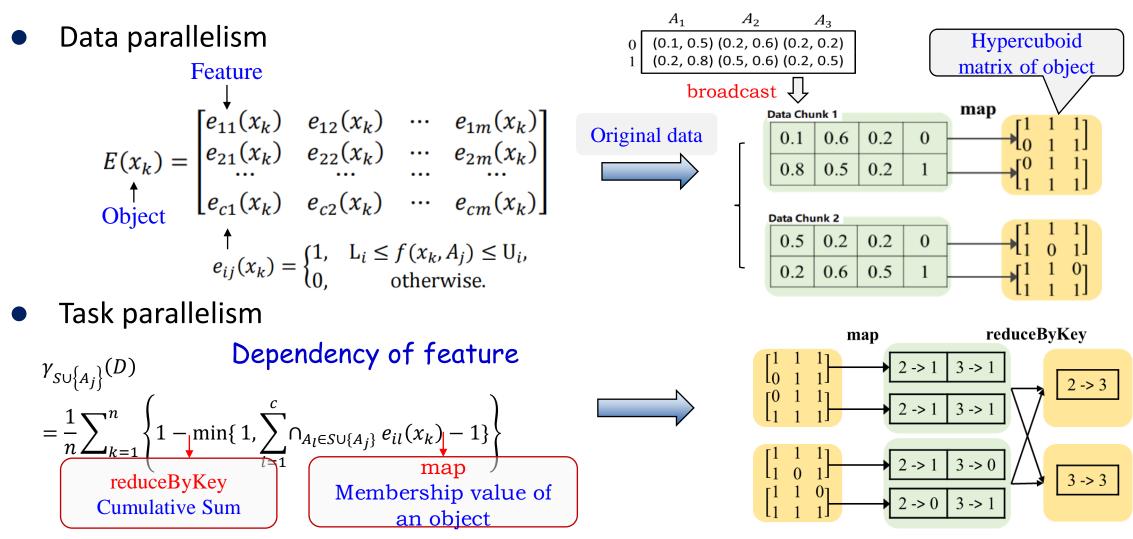




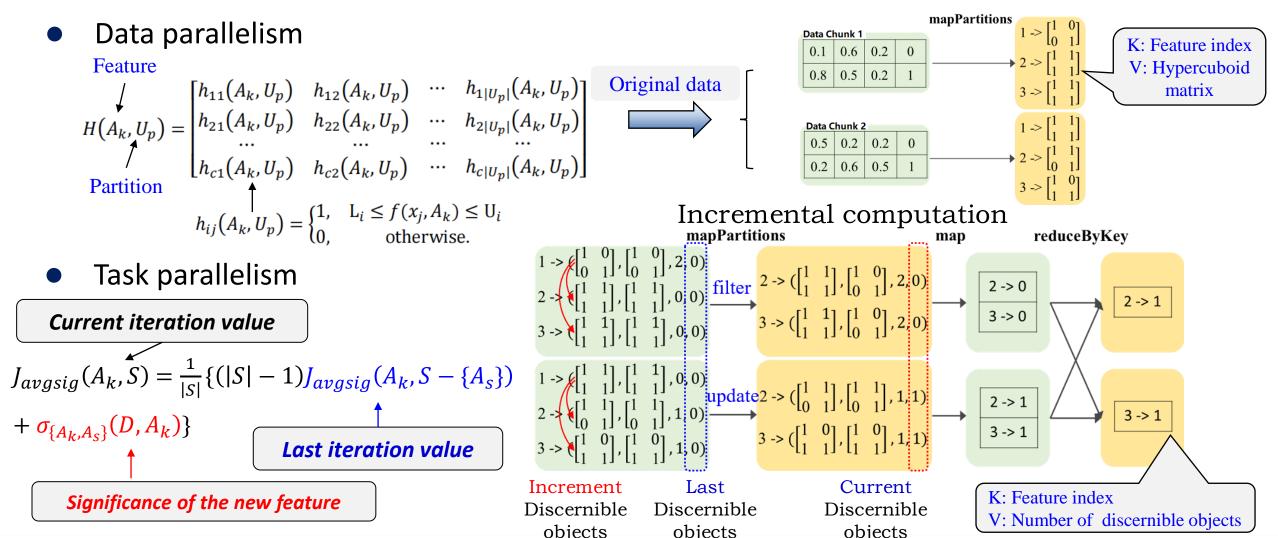
Hypercuboid matrix of object

Horizontal Partitioning Oriented Parallelizations

A THE

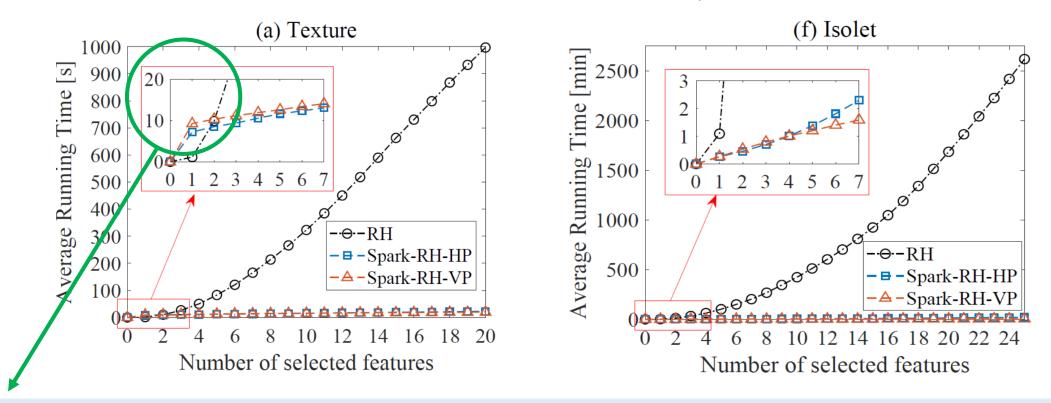


Vertical Partitioning Oriented Parallelizations



Evaluation

• Both horizontal and vertical parallelizations can produce selected features in very less time compared to the standard sequential algorithms



A fixed initialization time is required in the beginning of distributed program deployment in Spark cluster.

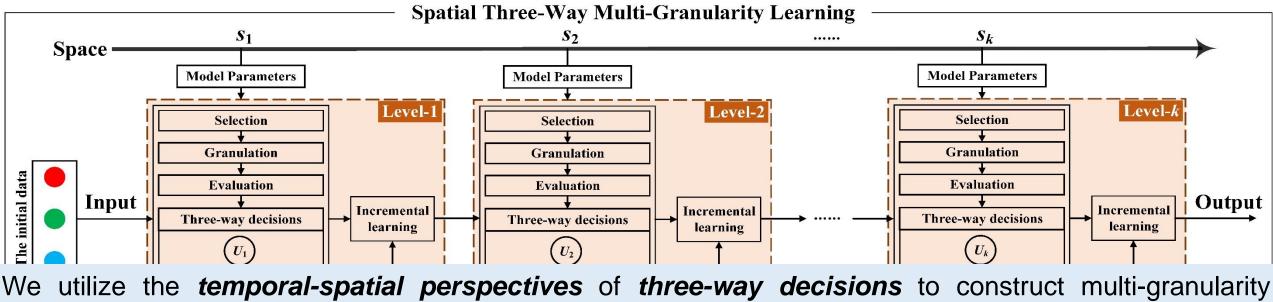
Problem 4: Open-world Dynamics

Three-way multi-granularity learning (3WMGrL) for Dynamic Fuzzy Environment

Joint work with

Xin Yang, Yujie Li, Dun Liu, Tianrui Li. *Hierarchical fuzzy rough approximations with three-way multigranularity learning*. IEEE Transactions on Fuzzy Systems, 2022.

The framework of 3WMGrL



structures and implement multi-granularity learning in the **dynamic open-world environment**.

Attributes Objects

In dynamical paradigm, 3WMGrL focus on *hierarchically* thinking, information processing and decisionmaking in threes by *incremental data and model parameters*, and make a series of reasonable three-way decisions with the **knowledge accumulation and transfer** under the multigranularity structures.

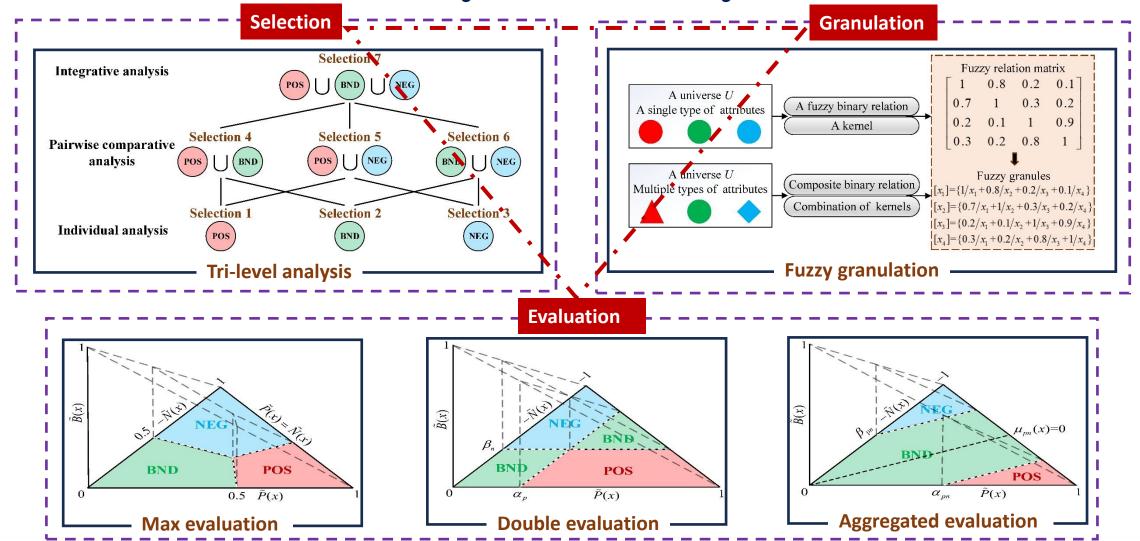
Attributes Objects

Attributes Objects

Temporal Three-Way Multi-Granularity Learning

3WMGrL for Dynamic Fuzzy Environment

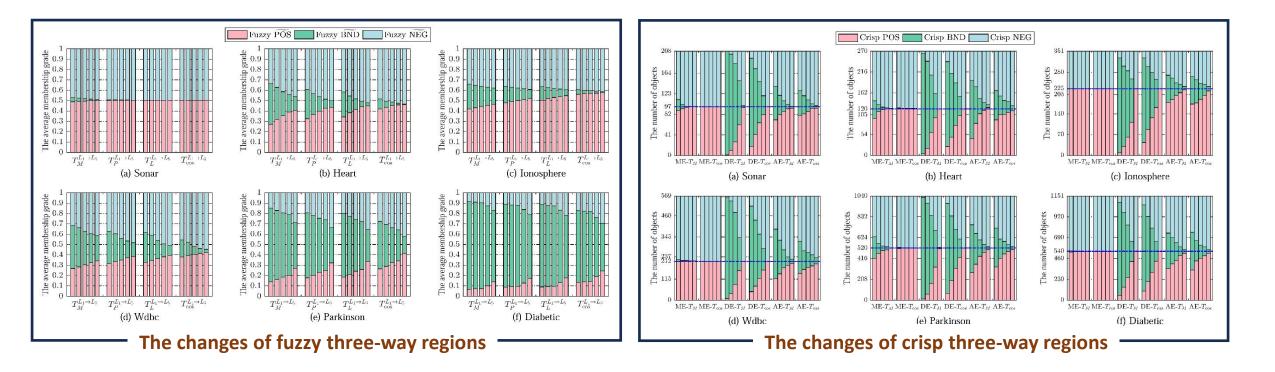
3681



1896 A SER A THE

Evaluation

• The uncertainty with the boundary regions is reduced incrementally



Problem 5: Multi-source Heterogeneity

Junbo Zhang, Yu Zheng, Dekang Qi, Ruiyuan Li, Xiuwen Yi, Tianrui Li, Predicting Citywide Crowd Flows Using Deep Spatio-Temporal Residual Networks, Artificial Intelligence, 2018

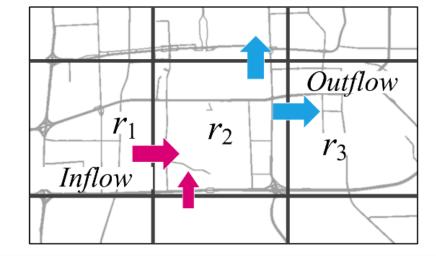
Background

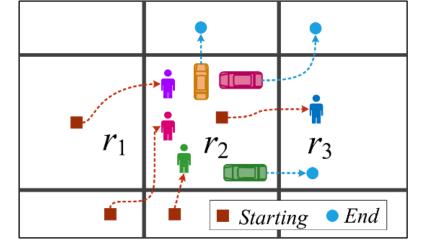
- Predicting crowd flows in a city is of great importance to traffic management, risk assessment, and public safety.
 - At least 146 dead after stampede during Halloween festivities in Itaewon, South Korea.

If one can predict the crowd flow in a region, such tragedies can be mitigated or prevented by utilizing emergency mechanisms, e.g., conducting traffic control, sending out warnings, or evacuating people, in advance.

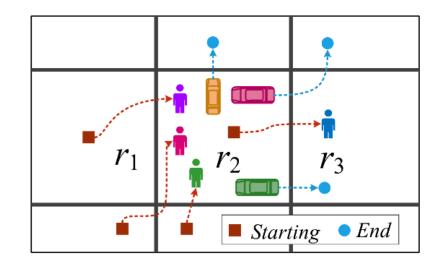
- Inflow is the total traffic of crowds entering a region from other places during a given time interval.
- Outflow denotes the total traffic of crowds leaving a region for other places during a given time interval.

Task: To predict two types of crowd flows: inflow and outflow.



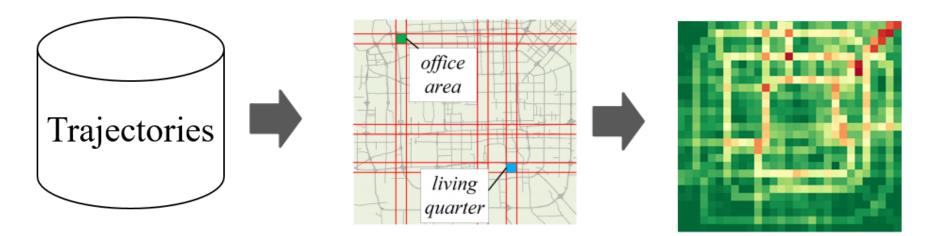


- Inflow/outflow can be measured by
 - the number of pedestrians
 - the number of cars driven nearby roads
 - the number of people traveling on public transportation systems (e.g. metro, bus)
 - or all of them together if data is available.

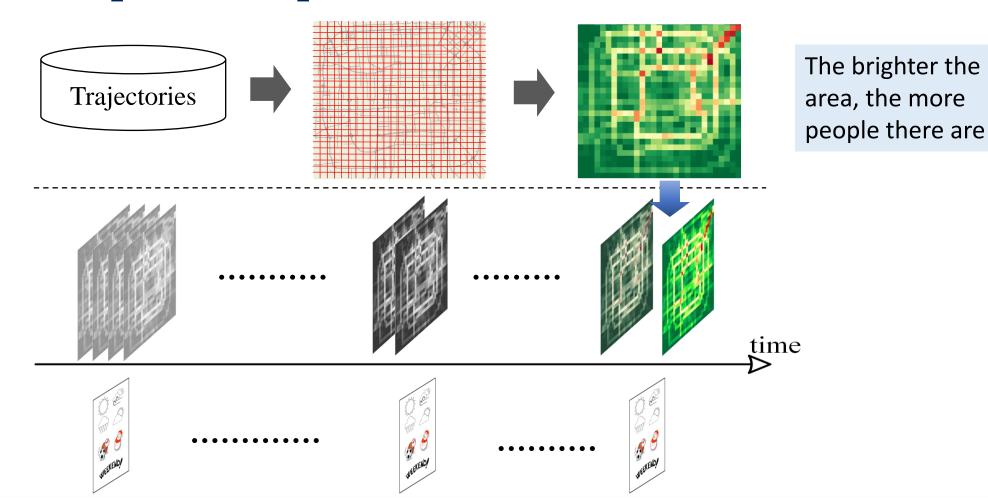


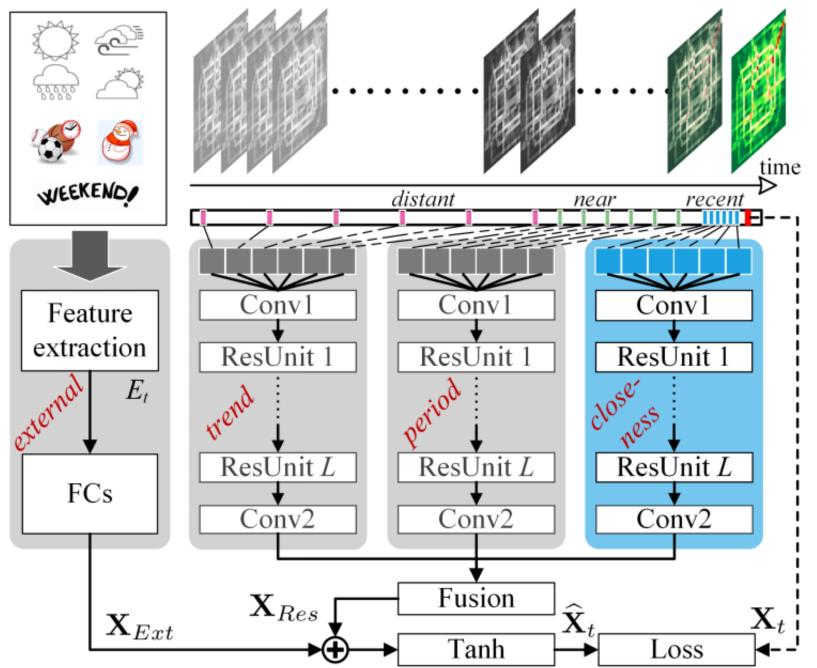
- We can use mobile phone signals to measure the number of pedestrians, showing that the inflow and outflow of r2 are (3,1), respectively.
- Similarly, using the GPS trajectories of vehicles, two types of flows are (0,3), respectively.
- Therefore, the total inflow and outflow of r2 are (3,4), respectively.

Our Solution: DST-ResNet



Converting trajectories into video-like data



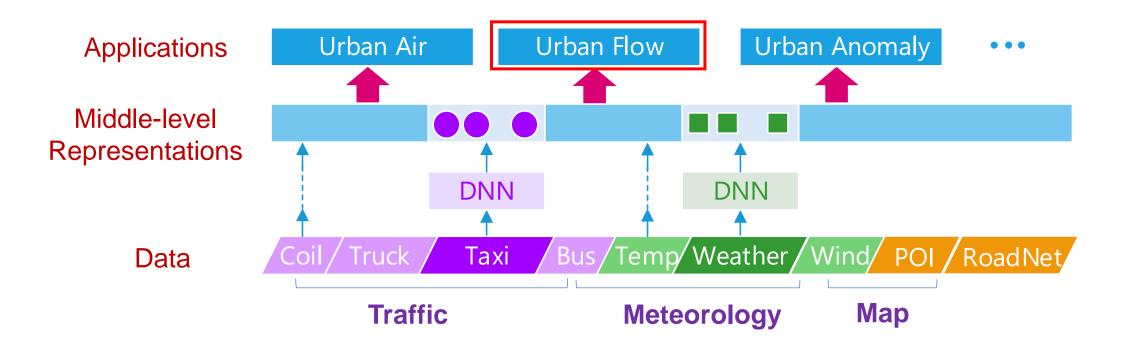


• The architecture of ST-ResNet.

It comprised of four major components modeling temporal *closeness, period, tre nd,* and *external influence,* respectively.

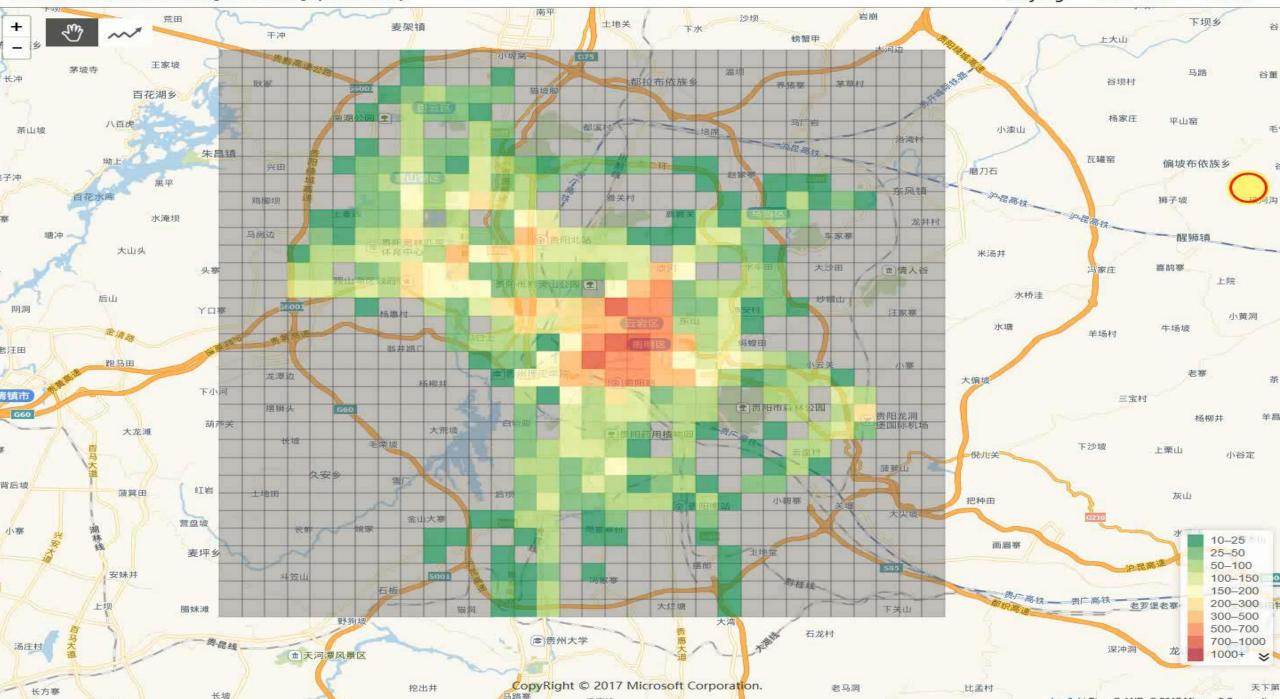
Conv: Convolution; ResUnit: Residual Unit; FC: Fully-connected.

• Fusing multiple datasets



Real-Time Crowd Flows Monitoring & Forecasting System in a City

Guiyang - 1km*1km - InFlow -



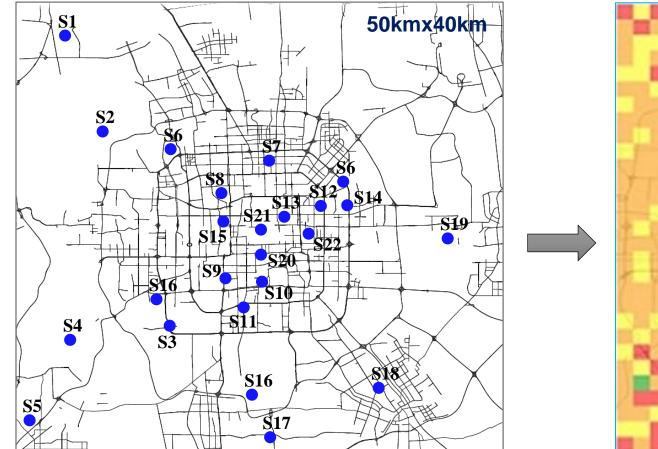
Deep Distributed Fusion Network for Air Quality Prediction

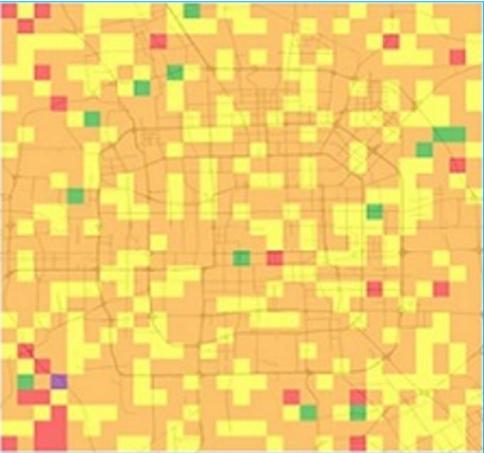
Xiuwen Yi Junbo Zhang Zhaoyuan Wang Tianrui Li et al Deep Distributed Fusion Network for Air Quality Prediction KDD2018

Background

With the rapid development of urbanization, air pollution is becoming a severe environmental and societal issue for all developing countries around the world.

Background



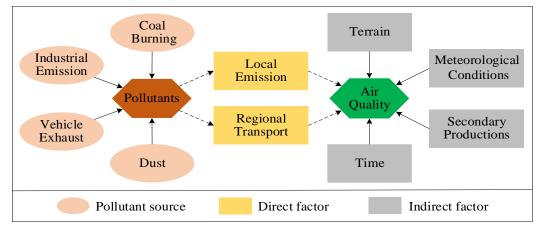


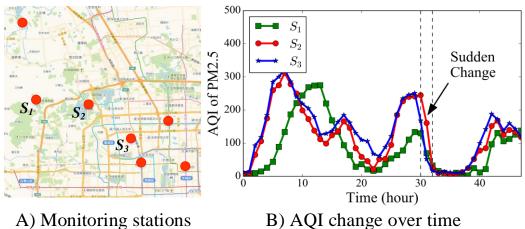
Air quality monitoring stations are limited. How can we infer the air quality at any location?

Challenges

Multiple influential factors with complex interactions

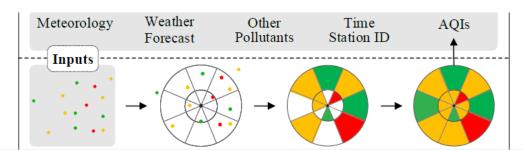
- Pollution sources, direct factors and indirect factors
- Affected by multiply factors simultaneously
- Dynamic spatio-temporal correlation and sudden changes
 - Urban air changes over location and time significantly
 - AQI drops very sharply in a very short time span





Deep Distributed Fusion Network

- Spatial Transformation
 - Air pollution dispersion
 - Spatial correlation
 - Scalability



Multi-source

Considering air pollutants' spatial correlations, the former component converts the spatial sparse air quality data into a consistent input to simulate the pollutant sources.

Deep Distributed Fusion Network

Spatial Transformation

- Air pollution dispersion
- Spatial correlation
- Scalability

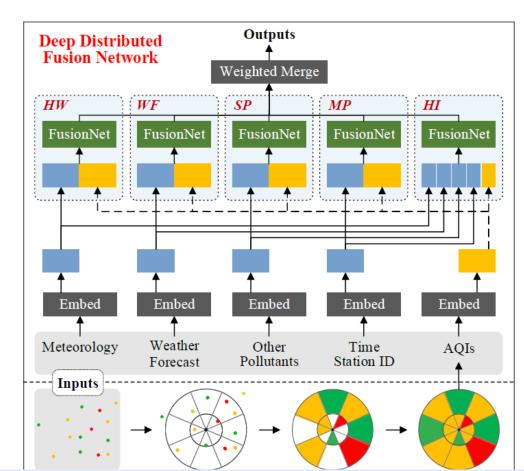
Distributed FusionNet

- HW/WF/SP/MP nets to capture different individual influences
- Capture holistic influence (HI)

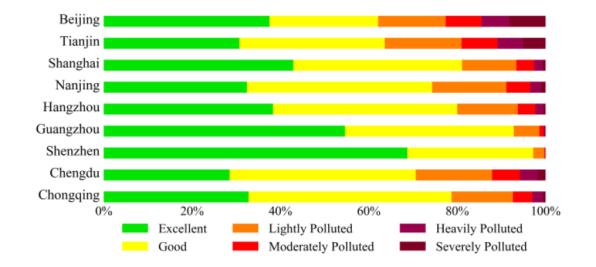
Weighted Merge

 $\widehat{\boldsymbol{y}} = Sigmoid(\boldsymbol{y}_{hw} \circ \boldsymbol{w}_{hw} + \boldsymbol{y}_{wf} \circ \boldsymbol{w}_{wf} +$

The latter network adopts a neural distributed architecture to fuse heterogeneous urban data for simultaneously capturing the factors affecting air quality, e.g. meteorological conditions.

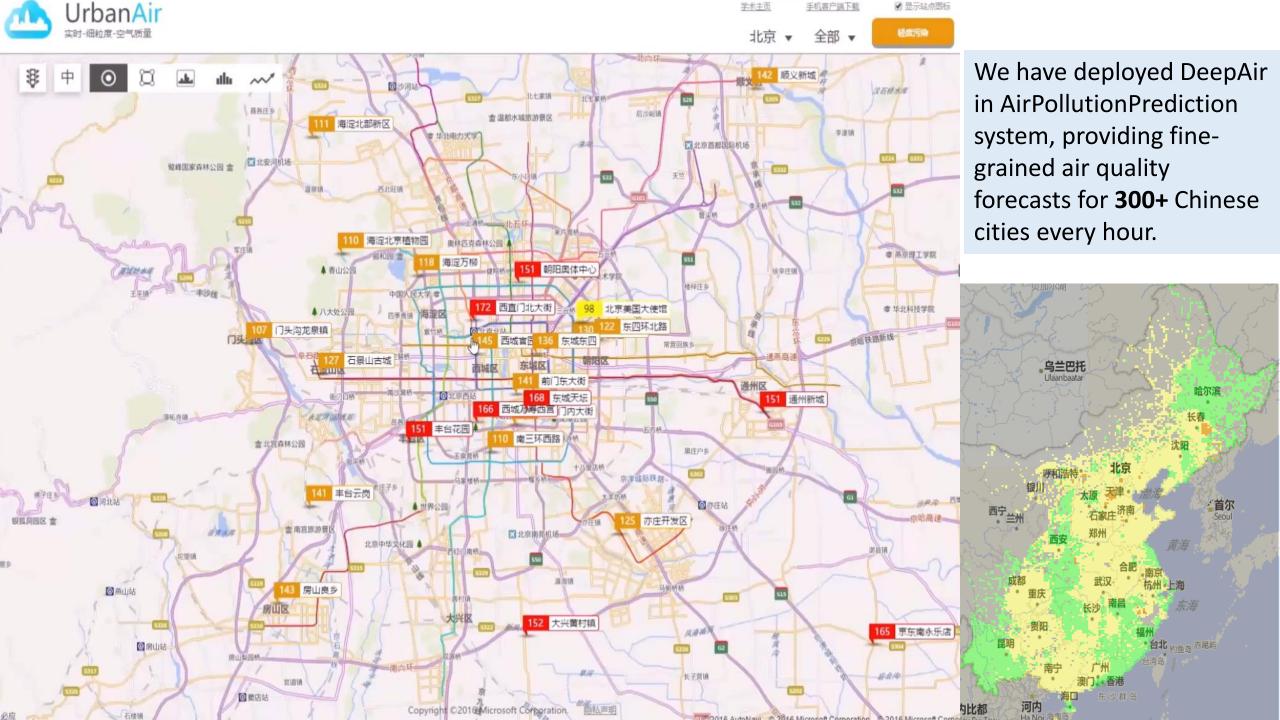


Evaluation



In-city stations	36
Instances	875,394
Sudden changes	20,540
Average PM _{2.5}	118.2
Neighbor stations	74
Sources	17
Instances	327,514
Sources	17
Instances	298,790
	Instances Sudden changes Average PM _{2.5} Neighbor stations Sources Instances Sources

Method	1-	6h	7-12h		13-	24h	24-	48h	Sudden Change	
Methou	acc	mae	acc	mae	acc	mae	acc	mae	acc	mae
ARIMA	0.751	28.3	0.576	52.1	0.458	65.4	0.307	74.6	0.066	112.9
LASSO	0.790	21.9	0.620	39.7	0.534	48.9	0.452	57.1	0.273	87.2
GBDT	0.792	21.8	0.629	38.8	0.540	48.0	0.458	56.5	0.321	21.8
LSTM	0.780	23.1±0.1	0.606	41.2±0.1	0.491	53.2±0.1	0.380	64.8±0.1	0.240	90.1±1.1
LSTM-STC	0.794	21.6±0.2	0.622	39.6±0.2	0.508	51.4±0.1	0.396	63.0±0.3	0.314	82.5±1.6
DeepST	0.806	20.4±0.1	0.633	38.1±0.2	0.545	47.5±0.2	0.466	55.7±0.7	0.380	74.5±2.9
DMVST-Net	0.806	20.4±0.1	0.638	37.8±0.3	0.550	47.4±0.5	0.481	53.9±0.7	0.419	70.4±2.0
DeepFM	0.808	20.1±0.1	0.643	37.3±0.2	0.549	47.2±0.6	0.474	54.9±0.6	0.396	72.3±1.9
DeepSD	0.811	19.7±0.1	0.645	37.1±0.2	0.551	46.8±0.8	0.479	54.3±0.7	0.428	69.5±3.3
DeepAir	0.812	19.5±0.2	0.656	36.1±0.2	0.569	45.1±0.1	0.500	52.1±0.3	0.471	63.8±2.8



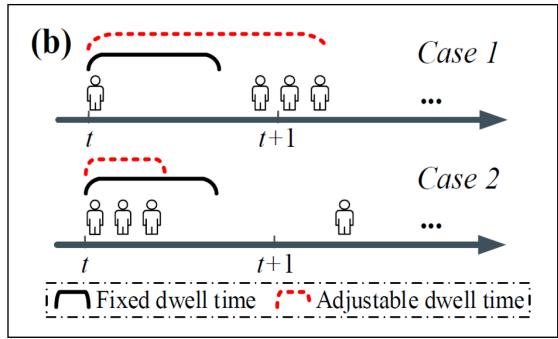
Metro Train Scheduling Optimization to Shorten Passengers' Travel Time

Zhaoyuan Wang, Zheyi Pan, Shun Chen, Shenggong Ji, Xiuwen Yi, Junbo Zhang, Jingyuan Wang, Zhiguo Gong, Tianrui Li, Yu Zheng. **Shortening passengers'** travel time: A dynamic metro train scheduling approach using deep reinforcement learning. IEEE Transactions on Knowledge and Data Engineering, 2023.

Background

- Shorten passenger travel time by adjusting train dwell time within a reasonable range
 - Shorten passenger travel time -> Improve work efficiency

 Traditional method: increasing the number of trains/ accelerating train speed

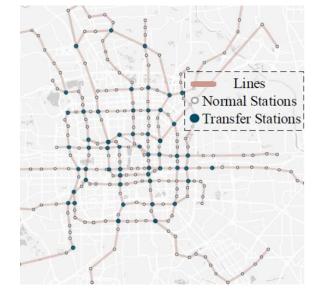


Metro Train Scheduling Optimization

• Adjusting the dwell time will have a long-term impact

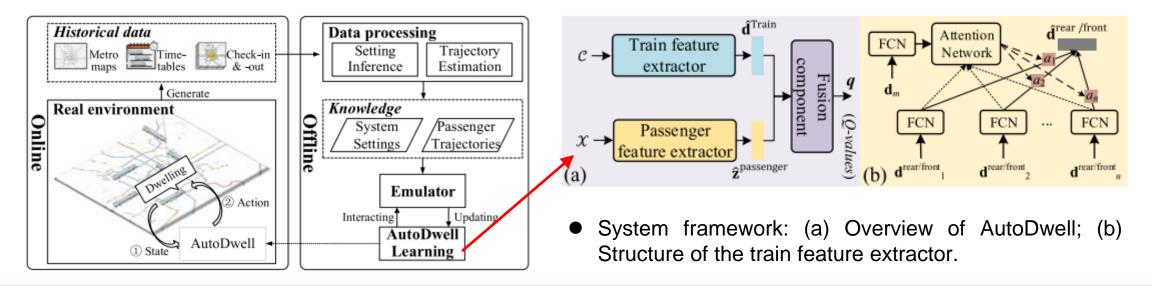
✓ Use deep reinforcement learning models to capture this impact

- The complex spatio-temporal relationship affects distribution of passengers
 - Design a deep learning module composed of networks,
 e.g. graph attention mechanism to characterize it
- Complex interactions between trains are generated
 - ✓ Develop a deep learning module composed of attention networks and other components to model it



Scheduling System Framework

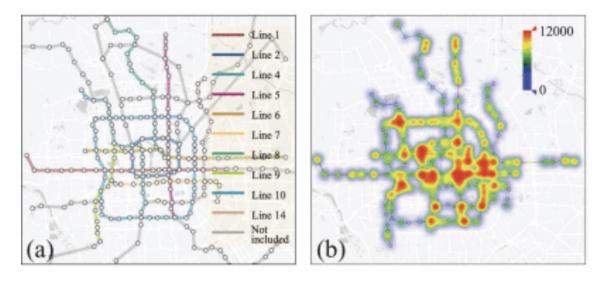
• A deep neural network named *AutoDwell* is proposed as the scheduling policy to boost passengers' experience



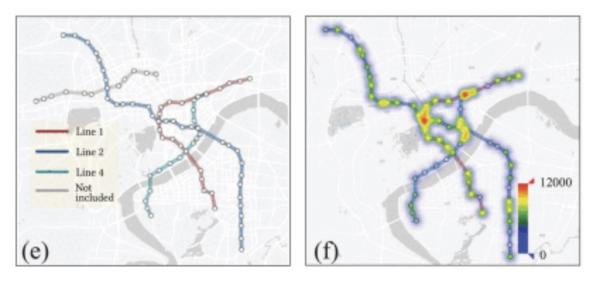
AutoDwell unlocks long-term rewards of actions according to the observed state by the guidance of the immediate reward, consisting of three components: train feature extractor, passenger feature extractor, and fusion network.

Sta	atistical levels & indic	Beijing	Hangzhou		
	# lines		10	3	
	# stations		182	66	
	# transfer stations		36	5	
~	Transfer ratio		0.59	0.31	
System	Total length		274.34km	89.99km	
Sys	# daily records	aver. SD	4,215,786.91 163,251.11	1,154,317 88,848.90	
	# stations for a trip	aver. SD	9.84 5.47	7.54 4.80	
	Trip time	aver. SD	1,923.71s 905.76	1,515.50s 840.72	
	# lines for a transfer trip	aver. SD	1.38 0.52	1.06 0.24	
Line	# stations of one line	max min aver. SD	45 13 21.80 8.42	32 18 23.67 6.02	
Γ	# of trips per day & line	max min aver. SD	757,302 170,982 351,336.70 167,671.38	594,262 155,484 350,789.30 182,339.6	
ц	# of check-in records	max min	84,561 2,051	93,372 3,418	
Station	per day & station	aver. SD	19,304.21 12,176.76	16,677.12 13,279.19	
	Distance between two neighbors	max min aver. SD	3.00km 0.42km 1.31km 0.43	3.32km 0.60km 1.32km 0.48	

Data Sets



(a) Metro map of Beijing; (b) Daily spatial distribution of check-in records in Beijing



(e) Metro map of Hangzhou; (f) Daily spatial distribution of check-in records in Hangzhou

Experiments on Saving Travel Time

M	etho	ds	Min	$_{Max}^{\rm FM}$	Aver	H Day	M Hour	P ARIMA	M RNN	PN ARIMA	IM RNN	w/o-T	autoDwe $w/o-P$	11 w-T&P
Beijing	\mathcal{P}_1 \mathcal{P}_2	<u>δ 8 8 8</u>	1896.391 0.232 1893.647 0.231	1938.902 0.233 1936.336 0.230	$1904.756 \\ 0.228 \\ 1902.402 \\ 0.229$	1874.787 0.227 1872.604 0.225	$1868.257 \\ 0.225 \\ 1865.263 \\ 0.223$	1883.834 0.230 1881.762 0.228	1885.194 0.231 1881.268 0.228	$1865.512 \\ 0.225 \\ 1863.428 \\ 0.224$	$1864.206 \\ 0.223 \\ 1862.060 \\ 0.222$	1868.823 0.225 1864.347 0.224	1849.393 0.216 1844.769 0.215	0.212
Hangzhou	\mathcal{P}_1 \mathcal{P}_2	8 8 8 8	$\begin{array}{c} 1503.352 \\ 0.293 \\ 1499.453 \\ 0.285 \end{array}$	$\begin{array}{c} 1519.288 \\ 0.298 \\ 1503.363 \\ 0.284 \end{array}$	$\begin{array}{c} 1513.241 \\ 0.299 \\ 1501.068 \\ 0.285 \end{array}$	$\begin{array}{c} 1486.735 \\ 0.287 \\ 1484.080 \\ 0.278 \end{array}$	$\begin{array}{c} 1485.984 \\ 0.286 \\ 1482.817 \\ 0.277 \end{array}$	$\begin{array}{r} 1498.058 \\ 0.294 \\ 1485.427 \\ 0.285 \end{array}$	$\begin{array}{c} 1501.693 \\ 0.295 \\ 1483.420 \\ 0.284 \end{array}$	$\begin{array}{c} 1482.276 \\ 0.288 \\ 1480.180 \\ 0.278 \end{array}$	$\begin{array}{c} 1479.821 \\ 0.287 \\ 1476.190 \\ 0.276 \end{array}$	$\begin{array}{c} 1493.215\\ 0.290\\ 1487.137\\ 0.286\end{array}$	$1463.429 \\ 0.279 \\ 1460.343 \\ 0.277$	0.275

Experiments on Saving Train Resources

		Bei	jing		Hangzhou					
Methods	\mathcal{P}_1		\mathcal{P}_2		\mathcal{P}_1		1	P_2		
	Ti-	Tr+	Ti-	Tr+	Ti-	Tr+	Ti-	Tr+		
FM-Max	4	11	4	11	16	14	15	13		
HM-Hour	2	5	1	3	10	7	9	6		
PM-RNN	2	5	2	5	13	10	14	12		
PMM-RNN	1	3	1	3	8	5	8	5		

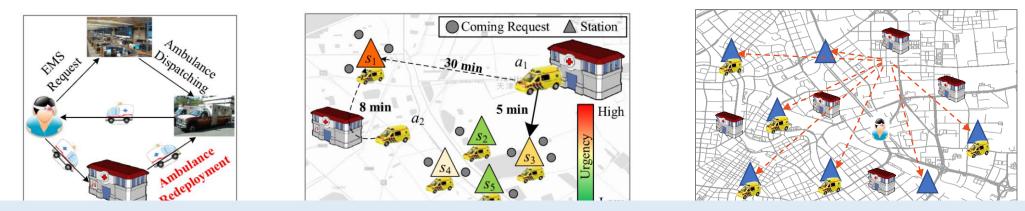
- It can save an average of 20 seconds per trip and millions of minutes of commuting time per day;
- It can guide the daily savings of dozens of train resources while maintaining the current level of commuting.

Real-time Ambulance Redeployment

Shenggong Ji, Yu Zheng, Wenjun Wang, Tianrui Li. Real-time ambulance redeployment: A data-driven approach. IEEE Transactions on Knowledge and Data Engineering, 2020.

Emergency Medical Services (EMS)

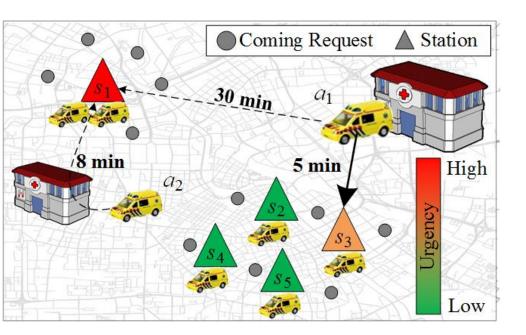
- EMS are of great importance to saving people's lives
 - Traffic accident, emergent disease
- EMS significantly depends on the real-time redeployment strategy of ambulances
 - Select one station for redeployment
- Goal: minimize the waiting time of patients
 - Make a call \rightarrow be picked up



Q: Which station should an ambulance be redeployed to, after it becomes available (after it transports a patient to a hospital or after it finishes the in-site treatment for a patient)?

Main Challenges

- When redeploying an ambulance, the following five factors need to be considered for each station:
 - D1: The number of available ambulances at each station.
 - D2: The number of EMS requests nearby each station in the future.
 - D3: The geographical location of each ambulance station.
 - D4: The travel time for the current available ambulance to reach each ambulance station.
 - D5: The status of other occupied ambulances.

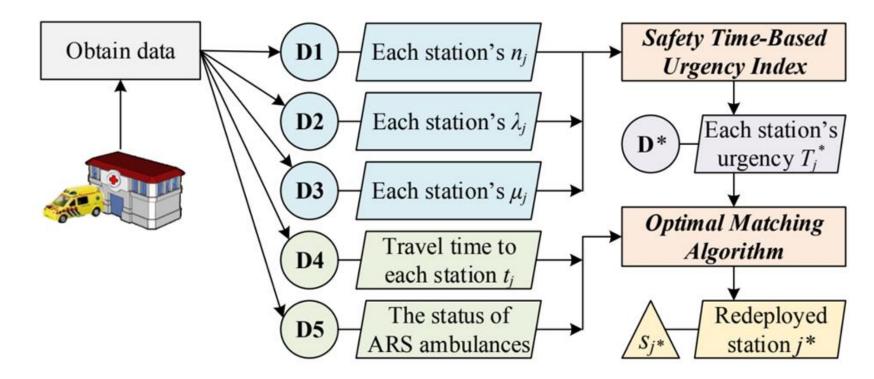


How to properly redeploy an available ambulance requires a careful consideration of all these factors is an open challenge for redeployment strategy of ambulances.

Data-driven Ambulance Redeployment

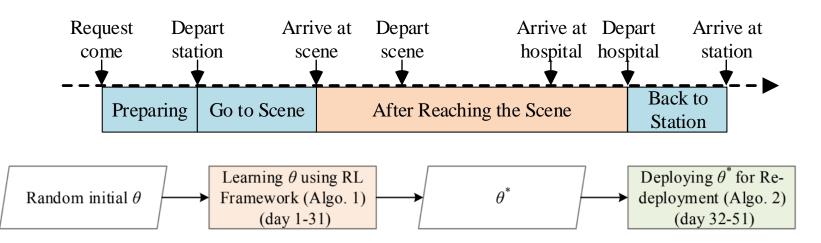
• Safety time-based urgency index: D1 , D2 , D3 \rightarrow D*

• Spatial-temporal optimal matching algorithm: $D^* \setminus D4 \setminus D5 \rightarrow Redeployment result$



Evaluation

- Simulation based on real datasets
 - Patients in history
 - Oct. 1 to Nov. 21, 2014
 - 23,549 EMS requests
 - Ambulance stations (34)
 - Hospitals (41)
 - Road networks



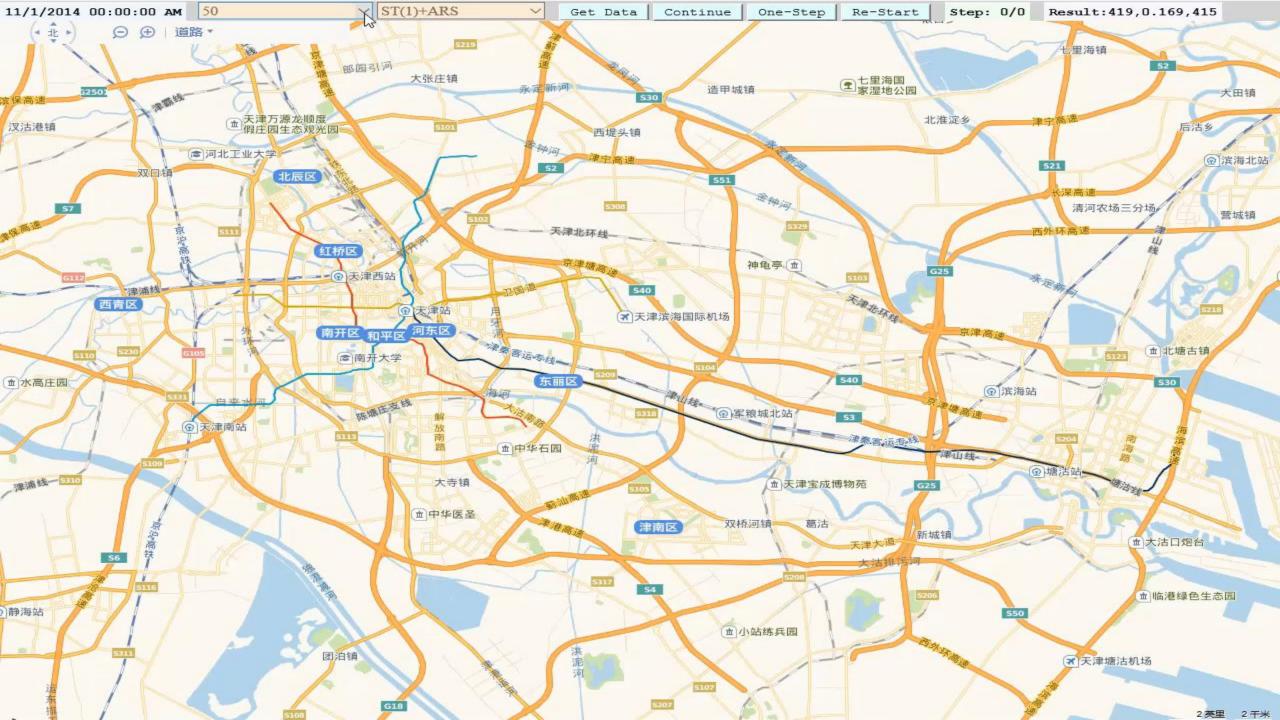
Evaluation

• Effectiveness

	#ambu = 50		#ambu = 60		#amb	u = 70	#amb	u = 80	#ambu = 90	
	AvePT	RelaPT	AvePT	RelaPT	AvePT	RelaPT	AvePT	RelaPT	AvePT	RelaPT
RS	856.5	0.531	778.7	0.569	759.6	0.583	747.9	0.591	741.4	0.596
NS	773.1	0.585	767.3	0.589	753.2	0.602	747.6	0.607	736.2	0.616
LS	603.8	0.745	531.2	0.785	480.1	0.808	444.8	0.823	423.9	0.831
ERTM	505.2	0.786	432.9	0.830	398.8	0.844	389.5	0.848	384.1	0.850
MEXCLP	502.4	0.774	461.8	0.822	409.1	0.852	392.9	0.862	376.9	0.872
DMEXCLP	516.9	0.773	447.3	0.826	408.7	0.852	387.1	0.865	375.2	0.872
DRLSN (ours)	402.8	<u>0.838</u>	<u>367.0</u>	0.864	<u>351.2</u>	0.874	342.0	<u>0.879</u>	<u>338.0</u>	0.880

- AvePT: Average pickup/waiting time
- **RelaPT**: Ratio of patients picked up within 10 minutes

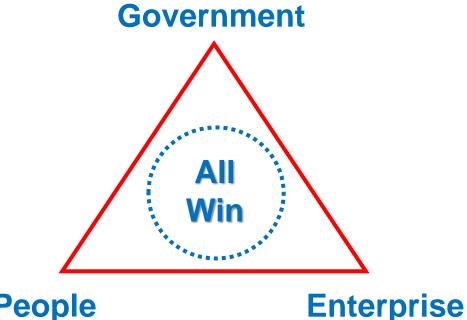
(#ambu=50) AvePT: save **~99 seconds (~20%)** (#ambu=50) RelaPT: from **0.786** to **0.838**



Conclusions

Big Data Intelligence Challenges

- Small number of labeled samples
- Privacy protection issues
- High-dimensional data
- Evolving data
- Multi-source heterogeneous data
- Application Case Study
- Future Work
 - Data + Knowledge
 - Interpretability (Rough Set, Three-Way) Decision, etc.)



People

Thanks!

South Gate of SWJTU

Library of SWJTU

School of Computing and Artificial Intelligence